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ABSTRACT
Big data SQL analytics platform has evolved as the key infrastruc-
ture for business data analysis. Compared with traditional costly
commercial RDBMS, scalable solutions with open-source projects,
such as SQL-on-Hadoop, are more popular and attractive to enter-
prises. In eBay, we build Carmel, a company-wide interactive SQL
analytics platform based on Apache Spark. Carmel has been serving
thousands of customers from hundreds of teams globally for more
than 3 years. Meanwhile, despite the popularity of open-source
based big data SQL analytics platforms, few empirical studies on
service quality issues (e.g., job failure) were carried out for them.
However, a deep understanding of service quality issues and taking
right mitigation are significant to the ease of manual maintenance
efforts. To fill this gap, we conduct a comprehensive empirical study
on 1,884 real-word service quality issues from Carmel. We summa-
rize the common symptoms and identify the root causes with typical
cases. Stakeholders including system developers, researchers, and
platform maintainers can benefit from our findings and implica-
tions. Furthermore, we also present lessons learned from critical
cases in our daily practice, as well as insights to motivate automatic
tool support and future research directions.

CCS CONCEPTS
• Information systems→ Data management systems; • Soft-
ware and its engineering→ Software reliability.
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1 INTRODUCTION
SQL analytics platforms play as the fundamental infrastructure for
decision support and business intelligence in many organizations.
With the ever-increasing data volume, the widely adopted solutions
have been evolving from traditional costly commercial RDBMS sys-
tems to scalable big data architectures, which have the advantages
of scale-out, elasticity and high availability. Over the past few years,
a growing number of organizations have turned to rely on Hadoop1
ecosystem to implement enterprise grade applications.

A common practice is to use Hadoop as the central data reposi-
tory for different data sources. Many Hadoop-based frameworks
are developed to manage and run deep analytics to gain action-
able insights, including analysis over semi-structured data, as well
as relational-like SQL processing over structured data. For enter-
prises, SQL processing always gains significant attention, as many
data management tools rely on SQL interface and many users are
familiar with it. As a result, a number of new big data SQL ana-
lytics systems (also known as SQL-on-Hadoop [5]) have increased
significantly, such as Hive2 and Spark SQL [1].

Compared with traditional RDBMS-based warehouse solutions,
big data SQL analytics platform is distinguished by its fundamen-
tally different architecture and deployment, including the interop-
erability of multi-layer [11] (e.g., hardware cluster layer, distributed
storage layer, resource management layer, distributed processing
layer), highly distributed, redundant, and elastic data repositories.
Rather than being a siloed and centralized data repository like a
solitary Oracle, a Hadoop cluster generally consists of anywhere
from tens to thousands of nodes. This group of machines works
in tandem to appear as a single entity, much like a mainframe, but
with much lower capital expense and operating cost. On the other
hand, in terms of software maintenance and evaluation, big data
SQL analytics platforms exhibit unique characteristics, due to the
necessary collaborative activities with open source community.

In eBay, we have built Carmel, a company-wide SQL-based an-
alytics platform to serve all of eBay’s interactive query analysis
traffic. Carmel is a typical SQL-on-Hadoop based on Spark, the
de facto industry standard for big data processing. To guarantee
the service quality, we have made plenty of customization efforts,
including well-defined incident escalation process, bug fix, perfor-
mance optimization, tool support, metric monitoring, as well as the
close collaboration with Apache Spark community.

*Corresponding authors
1Apache Hadoop: https://hadoop.apache.org
2Apache Hive: https://hive.apache.org
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Figure 1: Carmel platform architecture and deployment.

Despite the popularity of open-source based big data SQL an-
alytic platforms, to the best of our knowledge, few studies were
carried out for them, including the service quality, maintenance
and evolution. We believe that it is important to understand the
characteristics of service quality issues and root causes, so that
stakeholders including system developers, platform maintainers,
and researchers can benefit from the findings and implications. To
fill this gap, we conduct a comprehensive empirical study on 1,884
tracked issues and try to answer the following research questions.
• RQ1: What are the common symptoms of quality issues?
• RQ2: What are the common root causes of quality issues?
• RQ3: What efforts researchers can do to mitigate the issues?
Contributions. (1) We present the first comprehensive study on

service quality issues of open-source based big data SQL analytics
platform. Our work can help better understand the issues in similar
platforms and provide mitigation guidelines. (2) We perform in-
depth root cause analysis and obtain some interesting findings
that have rarely been discussed before, such as abnormal query
transformation and big data components mismatches. Our findings
not only facilitate engineers to diagnose and fix the issues, but
also motivate automatic tools for the ease of manual maintenance.
(3) We propose 5 research topics (also pain points in practice) on
reliability and performance, which require knowledge in software
engineering, system architecture, and databases.

2 BACKGROUND: CARMEL IN EBAY
In the past, eBay had years of investment in Teradata as its business
intelligence solution for company-wide data analytics. However,
with the continuously increasing data volume, the solution from a
third-party service vendor like Teradata not only exposes limita-
tions on scalability and flexibility, but also becomes more expensive.

History. In 2018, eBay started the Carmel project, a big data
SQL analytics platform. Carmel is based on Apache Spark and aims
to undertake the workloads from Teradata. One challenge we ever
confronted was how to empower the SQL execution engine with
matching performance and stability of the previous system. Though
Carmel can naturally inherit the scalability and flexibility of Spark,
there is a big performance gap between the previous commercial

software and the open-source Spark SQL engine. For example, a
query with multiple JOIN operators might only execute for a few
seconds on Teradata, while the same query could take several min-
utes on the new SQL-on-Hadoop engine, especially when multiple
users execute different queries concurrently. To reduce this gap, we
made significant optimizations and customizations, such as data
caching, bloom filter join, view-based access controls, dynamic pred-
icates pushing down, range join algorithm and so on. Carmel also
offers the capacity to integrate with complementary open-source
systems to provide better analytics functions and user experience.

Architecture. Figure 1 depicts Carmel’s platform architecture.
Gateway is the platform’s access point. It is lightweight and com-
patible with the Hive thrift protocol. Gateway is responsible for
client connection, authentication and traffic distribution. Business
intelligence tools, such as Tableau and MicroStrategy, can use JDBC
and ODBC protocols to connect with Carmel through Gateway to
run SQL commands. Spark adopts the master-slave architecture
containing one central coordinator and multiple distributed worker
nodes. The central coordinator is called Driver and it communicates
with all the workers. Each worker node consists of one or more
Executors. Carmel provides service by running many Spark Servers
in Hadoop YARN cluster. Organizations in eBay domain have dedi-
cated YARN queues to execute their respective workloads as a way
to get rid of resource contention. When a Spark server is started,
a number of executors will be allocated and started in the queue.
The thrift server and executors are long-running services that keep
processing all SQL requests coming to that queue. Carmel runs in
a Interactive Cluster, which utilizes SSD disk to speedup data IO
performance. The table metadata is stored in a shared Hive metas-
tore, which resides on a separate General Cluster. The metadata are
accessible by Spark driver and executors.

Workload lifecycle. The workload lifecycle in Carmel can be
described from high-level session to low-level task. Each connection
establishes a session, which contains a number of SQL queries. A
query will be transformed into a query plan. The transformation
is completed by the parser, analyzer and optimizer. A query plan
contains one or more Spark jobs. A job can be divided into a number
of stages based on the shuffle boundary. Each stage can be further
divided into a number of tasks based on RDD data partitions.
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RDD is an abstracted primitive in Spark for efficient distributed
computing. A task is the smallest work unit for Spark executors.

Carmel uses about 4,000 cluster nodes to manage and process
hundreds of petabytes of data. There are over 1,200 distinct users,
who submit about 300,000 SQL queries every day. The execution of
80% queries can be finished within 30 seconds. Carmel has already
evolved as a fundamental infrastructure in eBay and help saving
tens of millions of dollars every year. The platform’s outstanding
performance is a key factor in the smooth roll out of Hadoop ecosys-
tem across eBay. As we continue leveraging data to power eBay’s
tech-led re-imagination, building our own in-house solution puts
us in the driver’s seat for ongoing enhancements and innovations.

3 STUDY METHODOLOGY
We analyze 1,884 real-world service quality issues occurred on
Carmel in a whole year, a.k.a., from August 2020 to July 2021. It
should be clarified that our research focuses on the query engine
(i.e., the green colored part in Figure 1), which is the kernel of a
big data SQL analytics platform. For those relied components (e.g.,
Zookeeper), we will not dive into their internal mechanism details.
Hence, we also use Carmel "system" to refer in particular to the
Carmel-Spark system in the rest of this paper.

Data Collection. We track all the noteworthy issues as tickets
in eBay’s JIRA system. These issues could be reported by users,
detected by different monitoring tools, identified & promoted by
developers, or directly triggered by incident escalation. A JIRA
ticket contains all information about an issue, including but not
limited to background, priority, labels and comments. We develop
scripts to extract and analyze all tickets data through JIRAAPI. For a
small number of complex issues, we also refer to the history emails,
slack conversations, and audit logs as complementary information.

Issue Classification & Root Cause Identification. Carmel
has a suite of auxiliary tools (e.g., monitoring systems, regression
testing system, query execution history server, audit log system),
and a well-defined escalation process to track and investigate ser-
vice quality issues on 24/7 basis. For example, Carmel’s audit log
system pre-defined about 40 error message patterns with frequent
keywords (e.g., "IO exception") to automatically extract and catego-
rize job failures. Carmel’s monitoring system monitor more than
100 metrics (e.g., execution time, IO inputs, etc.) in real time.

Step 1: Symptom classification. Firstly, it is straightforward to
get the major symptoms from auxiliary tools and customer’s re-
port, including (1) whether the job runs successfully? (2) is the
performance satisfactory? (3) are the query results correct? Then
the on-call engineer investigates the audit log system and history
server to determine the further detailed classification. Therefore,
this step is semi-automatic and conducted in daily maintenance.

Step 2: Labeling and root cause analysis. It is a manual process
accomplished by the corresponding on-call engineer in every week.
In practice, the root cause analysis of each issue is completed within
3 days. Then the on-call engineer send a mail to team with the
issue details, including the issue summary, impact, event timeline,
corrective measure and preventive measures.

Step 3: Team review. To reduce bias and misunderstanding, on-
call engineers share the issues occurred in previous week and the
Carmel team (made up of 6 senior and 2 expert software engineers)

Table 1: Platform quality issue symptoms.

Category Symptom Count Ratio

Job Failure

Threshold triggered 209 11.09%
OOM exception 92 4.88%
Memory Full GC 68 3.61%
Parse exception 41 2.18%

Analysis exception 56 2.97%
Planning error 87 4.62%
IO exceptions 244 12.95%
Task timeout 96 5.10%

Broadcast failure 61 3.24%
Other trivial cases 133 7.06%

Subtotal 1087 57.7%

Job Slowness

Resource shortage 274 14.54%
High CPU usage 77 4.09%
High I/O usage 239 12.68%
Scheduler stuck 37 1.96%
Stage & task retry 39 2.07%
Other trivial cases 38 2.02%

Subtotal 704 37.36%
Wrong Result Incorrect data 97 4.94%

Total 1884 100%

reviews these issues every week. In case of disagreement, the team
will create more in-depth discussions. After that, the team builds
weekly reliability report. Moreover, as a necessary maintenance
activity for the opensource-based software, Carmel engineers keep
close interactions with Spark community to ensure the right un-
derstanding and fix approaches for those common issues.

Threats to Validity. (1) Internal threats to validity. Manual study
is indispensable for classification. In this process, subjectiveness
would arise during root cause reasoning. For some classifications,
we may ignore to highlight some rarely-happen but important issue
patterns that fall in the “Other” category. Moreover, some issues
may be also ignored to classified into more than one categories.
In our study, we minimize subjectivity by considering both JIRA
labels, email subjects and slack conversations in complementary.
(2) External threats to validity. Though Carmel is a typical big data
SQL analytics system, its deploy mode and workload characteristics
may be different from other systems. For example, the dominant
workloads for some enterprises are batch-oriented and scheduled
periodically, the corresponding issue categories may have different
percentages. Besides, other computing engines (e.g., Hive) may
adopt different architectures which introduce different issues. In
addition, the issues caused by internal features like access control,
may be difficult to generalize to other systems.

4 RQ1: SYMPTOMS OF QUALITY ISSUES
According to different symptoms, the platform issues can be classi-
fied into three categories, as shown in Table 1.

(1) Job Failure. Many queries fail with exceptions or errors,
which can be appeared in different phases and components. As de-
picted in Figure 1, Carmel leverages Spark for query planning and
execution. The driver is responsible for parsing, analyzing, optimiz-
ing and transforming the query to physical plan, and then schedule
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tasks inside the plan, whereas the executors are responsible for
running the tasks (one thread per task) in a distributed cluster. Job
failures can occur in both driver side and executor side.

The most two prominent job failure symptoms are IO exceptions
(12.95%) and threshold exceeded exceptions (11.09%). IO exceptions
include a wide range of data loading, writing, and shuffling related
issues. For example, heavy data shuffling spills large volumes of
data into disk and usually produces disk IO related issues. As a
shared service for multi-users, to guarantee the system availability,
Carmel adds a variety of thresholds in different system modules,
including restrictions on data size for join key, broadcast table size,
directory item size, download size limits and so on. When these
thresholds are triggered, users will get the corresponding error
message. The failure symptoms in the query transformation phase,
including parsing (2.18%), analyzing (2.97%) and planning (4.62%)
are also common and easy to be understood by users. Memory-
related failures totally occupy 8.49% percentage, including memory
full GC (3.61%) and OOM exceptions (4.88%). Almost all memory
full GC occurred in driver side, while OOM exceptions exist both in
driver side and executor side. In practice, we also pay much atten-
tion to memory-related failures with comprehensive monitoring,
diagnosing, and discussion. Moreover, the job can fail as broadcast
failures (5.89%), task timeout (5.10%) and other trivial cases.

(2) Job Slowness. Many queries run successfully, but users
suffer from its low performance. One scenario is the abnormal
long execution time that contradicts common sense, for example, a
simple query that counts a table with only a hundred of rows takes
nearly one hour. Another scenario is the execution of a recurring
query takes relatively long time than before. For example, we often
notice users’ complains like "my query can always finish within 10
minutes, why it spends more than 30 minutes today?"

In the platform side, the most prominent (14.54%) symptom is
the resource shortage, especially when the total cluster workload
is busy at peak periods (e.g., Monday morning). Too many queries
run concurrently, and part of them have no choice to wait for
resource allocation. The second most (12.68%) symptom is high
IO usage, which covers a wide range of data reading, writing, and
shuffling related issues. For example, when a query scans huge
tables, we observe explosive IO usage growth. The symptom of
high CPU usage is also common (4.09%) in practice. There are CPU
intensive functions (e.g., regex pattern match) that involve complex
calculations. Meanwhile, system defects (e.g., unimplemented code
generation for some operators) can also impact the CPU usage.
Besides, job slowness can also manifest as scheduler stuck (1.96%),
stage or task retry (2.07%) and other trivial cases.

(3) Wrong Result. Some queries produce wrong results, which
can be characterized as incomplete data or incorrect values. Wrong
results adversely affect user experience and business, especially
those involving payment and finance. Different with job failures
and slowness, some wrong results may be identified after several
months since they occurred. In our practice, issues falling in this
symptom always attract attentions with high priority.

Finding 1: The platform quality issues manifest as more than
15 main symptoms and can be classified into three categories, i.e.,
Job Failure (57.7%), Job Slowness (37.36%) and Wrong Result (4.94%),
indicating the diversity of issues in production environment.

5 RQ2: ROOT CAUSES OF QUALITY ISSUES
After identifying the root causes of these service quality issues
listed in Table 1, we get the following finding.

Finding 2: The root causes can be classified into three primary
categories: 14.54% issues are caused by User Side Faults, 46.02%
caused by System Internal Defects in Carmel-Spark during the query
planning and execution, and 39.44% caused by Platform Component
Mismatches among different open-source components.

5.1 User Side Faults
Each job includes a SQL query, several system-related configurations,
and the dataset to be analyzed. User side faults refer to the faults
in these three user-defined items. As detailed in Table 3, user side
faults include SQL anti-patterns (73.16%), improper configurations
(20.22%), and others like platform misuse (6.62%).

5.1.1 SQL Anti-Patterns. An anti-pattern (AP) refers to a design
decision that is intended to solve a problem, but incurs other prob-
lems by violating fundamental design principles. The Anti-Patterns
in SQL queries can lead to convoluted logical and physical database
designs, thereby leads to job failures or performance degradation.

(1) Wrong code intention. Users wrote "correct" queries with
correct grammar but wrong intention, leading to unexpected exe-
cution (e.g., data explosion) or results. For such cases (e.g, Figure
2), we interact with users and find that the root causes are caused
by users’ error-prone programming habits.

LEFT JOIN p_sells1 AS d
ON a.uid = c.uid
AND a.site = c.site
LEFT JOIN p_sells2 AS e
ON a.uid = c.uid
AND a.site = c.site

§ copy & paste

SELECT a.user_id, b.res
FROM dw_subscribe_his a
--try WHERE a.dt>‘2020’
JOIN unreg_slrs b
ON a.user_id = b.slr_id

§ comment by mistake

SELECT *
FROM db.p_castdev_t

SELECT *
FROM db.p_castdep_t

§ confusing names

§ procedural method
INSERT INTO db.risk
VALUES

(‘A’,1,‘2020’)
……………………………………
(‘X’,2,‘2020’)

string concatenation

Figure 2: Four typical cases of wrong code intention.

• Copy & paste. Users copy and paste similar code snippets in their
scripts but they forget to change the table names or column
names, leading to wrong results.

• Confusing names. Many table and view (virtual table) names are
very similar, users may misuse each other, leading to wrong
semantic results or runtime exceptions.

• Comment clauses by mistake. Users comment some operators
by mistake. For example, theWHERE operator was edited mis-
takenly by a user, which leads to both wrong result and low
performance (caused by a large table scan without filter).

• Procedure programming habits. SQL language is declarative with
relational operators. In case 4, the logic can be simply and effi-
ciently implemented with a SELECT clause. However, the user
writes a script to concatenate all rows into the query, generating
a 500MB string that is directly rejected by our platform.
(2) Inefficient SQL patterns. Users write inefficient queries

that leads to low job performance, as demonstrated in Figure 3.
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Table 2: Root cause categories of the quality issues.

Job Failure Job Slowness Wrong Result Total
User Side Fault 132 115 27 274(14.54%)

System Internal Defect 483 338 46 867(46.02%)
Platform Component Mismatch 472 251 20 743(39.44%)

Total 1087(57.7%) 704 (37.36%) 93 (4.94%) 1884 (100%)

Table 3: Root causes of the user side faults.

Root Cause Count Ratio

SQL
Anti-Pattern

Wrong code intention 39 14.34%
Inefficient SQL pattern 112 41.18%
Inefficient data model 32 11.76%
Non-determinism 16 5.88%

Subtotal 199 73.16%
Mis-configuration Improper parameters 55 20.22%
Other trivial cases Platform misuse etc. 18 6.62%

Total 272 100%

CPU-consuming function IO-consuming query

Redundant window computation Redundant join Cartesian product

SELECT CASE
WHEN get_json_object(s, ‘$.a')=‘1’…   
WHEN get_json_object(s, ‘$.a')=‘2’…

FROM t

SELECT a
FROM (
SELECT row_number()…AS rn
……) WHERE rn = 1

SELECT *
FROM t1 JOIN t2
ON t1.id like t2.id

SELECT max(t1.a)
FROM t1 LEFT JOIN
t2 ON t1.id = t2.id

SELECT 'A' AS ID
FROM t WHERE x = 'XA‘
UNION ALL
SELECT 'B' as ID
FROM t WHERE x = 'XB'

Figure 3: Five typical cases of inefficient SQL patterns.

• CPU-consuming user-defined functions. For complex computation,
users can utilize UDF (builtin or user-defined functions) in SQL
queries, such as the get_json_object in case 1 for processing JSON
data. When the UDFs are CPU intensive and invoked many times,
they will degrade the job performance.

• IO-consuming query. Some queries that read the same table mul-
tiple times can be combined to reuse table scan to reduce IO cost
and avoid generating too many tasks.

• Redundant computation. In the query example, only the first
record is retrieved after calculating the row number. The redun-
dant computation of window clause degrades performance.

• Redundant operator. Similar to the JOIN in case 4, some operators
are redundant and can be simply removed.

• Cartesian product. Joining tables without efficient join condi-
tion generates time-consuming Cartesian product. It should be
avoided with best rewriting efforts.

• Redundant data. Some special values that represent meaningless
data in business are not filtered and participate in query process-
ing. Another typical scenario is the condition on different types.
For example, "𝑎.𝑖𝑑 = 𝑏.𝑖𝑑", in which "a.id" is string and "b.id"
is double. When the implicit type coercion fails, it will produce
massive NULL values, resulting in data explosion and data skew.

Although the query planning tries best to handle more scenarios,
there are still cases out of the coverage. For example, the CPU-
consuming function pattern is trivial but difficult to be identified.

(3) Non-determinism. Queries may generate inconsistent re-
sults at each execution. Apart from some non-deterministic func-
tions like random(), current shuffle implementation can also intro-
duce uncertainty in group row order.

SELECT a, b
FROM (SELECT row_number()
OVER (PARTITION BY c ORDER BY a) AS rn FROM t)
WHERE rn = 1

For example, the above query first groups rows by column ‘c’
and then orders the rows in each group by column ‘a’. It achieves
the same result when running on a single machine for many times.
However, when running in a cluster for many times, the orders of
the rows in each group are different since the rows from different
nodes are shuffled into one node by network without order. This
unordered shuffle leads to inconsistent results.

(4) Inefficient data model design. To improve the big data
management and query performance, Carmel provides some ad-
vanced data models (formats) for data storage and efficient queries,
including partitioned tables, buckets, views, etc. Users sometimes
forget to use them or inappropriately use them, leading to low job
performance. For example, one user created a table without defin-
ing which columns can be partitioned. It may work well when data
size is small. However, with the data increase, scanning the whole
table reads a large number of files, leading to poor performance.

Finding 3:More than 70% user-side faults caused by SQL anti-
patterns, including code smells, low performant queries, ambiguous
operators, and inefficient data mode design. For error detection,
the difficulty centers on ferreting out wrong business semantics
from normal queries with correct syntax (i.e., can be successfully
parsed and executed). Besides, the pain point is the lack of tools
and guidelines for users, especially those who have less experience.

5.1.2 Improper job configurations. Built on Spark, users can
specify job parameters, including resource-related configurations
such as thememory sizes of driver and executors, aswell as dataflow-
related configurations like partition number. However, it is difficult
to set and tune these configurations, especially before running the
jobs, even for experienced engineers. In practice, many users prefer
to get recommended parameters from open forums like StackOver-
flow. In many cases, the "answer" may be not applicable to their
specific jobs, leading to job failure or performance degradation.

Case: Out-of-memory error due to improper data broad-
cast threshold. We have a configuration-related issue occurred in
October 2020, when the user submitted a query to join two tables.
One is a 700GB large table, whereas another one is a 1GB table.
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Table 4: Root causes of system internal defects.

Root Cause Detailed causes Count Ratio

Abnormal &
Sub-optimal
query plan

transformation

Rule issue related 43 4.96%
Rule execution order 14 1.61%
Suboptimal plan 144 16.61%

Inaccurate statistics 29 3.34%
Codegen related 11 1.27%

Subtotal 241 27.79%

Inefficient runtime
data management

Input data 82 9.46%
Intermediate data 155 17.88%

Output data 15 1.73%
Subtotal 252 29.07%

Large metadata Job & task meta info 56 6.46%

Internal component
design limitation

Shuffle framework 97 11.19%
Job DAG Scheduler 44 5.08%
Job Thrift Server 29 3.34%

Subtotal 170 19.61%
Other trivial causes New feature bug, etc. 148 17.07%

Total 867 100%

Normally, Spark will transform this query to sort-merge based
JOIN for joining two tables. To improve query performance, the
user searched suggestions3 on Stackoverflow and tried to make it
as a broadcast based JOIN, based on the assumption of "big table
join small table". After enlarging the broadcast threshold to 500MB
(note: the default value is 100MB in our platform), Spark diver tried
to buffer and broadcast the 1GB table, leading to the OOM error.

Apart from the resource- and dataflow-related configurations,
users sometimes specify wrong client properties, i.e., account/securi-
ty/privilege related configurations. For example, users may wrongly
configure the resource queue name, certificate key or service ac-
count when they interact with the Carmel server.

Finding 4: About 20% user-side faults caused by improper user-
side configurations. It is error-prone especially when the configu-
rations relate to resource usage or dataflow processing behaviors.

Implication: It is practical to enable the system to anticipate
and defend against configuration errors. A model to evaluate the
configuration’s effectiveness is beneficial to address the challenges.

5.1.3 Others. There is also a small number (totally 18 issues)
of user side faults related to data privileges (e.g., accessing illegal
tables), mismatched (ODBC and JDBC) client versions, and platform
misuse (e.g., creating a new table on existing table paths).

5.2 System Internal Defects
Carmel leverages Spark system to transform and execute user-
submitted jobs (i.e., queries, data, and configurations) in a dis-
tributed cluster. In case of computation/data/memory-intensive
jobs, some Spark internal components, including job (DAG) sched-
uler, query planner, and distributed execution runtime framework,
can suffer from errors or performance degradation due to internal
defects, as depicted in Table 4.

3Tuning broadcast threshold: https://tinyurl.com/y2f8rvnw

5.2.1 Abnormal/Suboptimal query plan transformation. Af-
ter receiving the SQL query, Spark’s query planner (in the driver)
will transform the query to a physical plan that contains executable
stages and tasks as shown in Figure 1. This query transformation
is sophisticated with four steps [1] as follows.
• Logical planing: Spark parses SQL as Unresolved Logical Plan, and
then verifies the plan with catalog (i.e., metastore of entities, e.g.,
tables, columns etc.) to generate Analyzed Logical Plan.

• Logical plan optimization: Spark defines a batch of rules and apply
them iteratively to derive Optimized Logical Plan.

• Physical planning: Spark then takes the optimized logical plan
and generates Physical Plan. During this phase, Spark decides
which algorithm must be used for every operator. For example,
the decision on which join algorithm must be used, whether sort-
merge based JOIN or broadcast-based hash JOIN, is made at this
stage. The cost-based optimization framework4 leverages data
statistics (e.g., row count, max/min values, etc.) to choose the
better plan. However, outdated statistics can lead to sub-optimal
query plans. AQE5 (Adaptive Query Execution) tackles with
such issues by re-optimizing and adjusting query plans based on
runtime statistics collected in the process of query execution.

• Code generation [8]: Once the best physical plan is chosen, Spark
generates Java code that can be compiled and run on each node.
We found that there are a few defects in both the rule-based logi-

cal planning and cost-based physical planning. As a result, the query
planner generates abnormal or suboptimal query plans, leading to
job failures, performance degradation, or wrong results.

Case 1: Abnormal plan due to the incomplete rule. Opti-
mization rule logic bug generates wrong result. Some optimization
rules can bring regressions with incorrect computation logic. For
example, we ever picked the implementation to optimize "IN " pred-
icates6 , leading to incorrect result. From the predicate "a in (1, 2,
4)", we can infer predicate "𝑎 >= 1&&𝑎 <= 4". But the optimization
ignores the reverse situation, i.e., predicate "a not in (1, 2, 4)" cannot
infer the predicate "𝑎 < 1&&𝑎 > 4".

Case 2: Abnormal plan due to wrong rule order. In a job
failure case, the generated JOIN plan has different left and right
side partition numbers. EnsureRequirements rule should be invoked
before RemoveRedundantSorts rule7. The RemoveRedundantSorts
rule uses SparkPlan’s output partitioning information to check
whether a sort node is redundant. Since some operators require left
and right partitioning to have the same number of partitions, which
is not necessarily true before applying the EnsureRequirements rule.
Consequently, if the RemoveRedundantSorts rule is invoked before
the EnsureRequirements rule, a query can fail with exceptions.

Case 3: Abnormal plan due to rule conflict. Rule conflicts
between PaddingAndLengthCheckForCharVarchar and ResolveAg-
gregateFunctions8. ResolveAggregateFunctions is a hacky rule and
it calls ‘executeSameContext’ to generate a ‘resolved agg’ to de-
termine which unresolved sort attribute should be pushed into
the ‘agg’. However, after we add the PaddingAndLengthCheckFor-
CharVarchar rule which will rewrite the query output, thus, the
4Cost Based Optimization: https://issues.apache.org/jira/browse/SPARK-16026
5AQE: https://issues.apache.org/jira/browse/SPARK-33828
6IN optimization: https://issues.apache.org/jira/browse/SPARK-32792
7Rule order issue: https://issues.apache.org/jira/browse/SPARK-33472
8Rule conflict: https://issues.apache.org/jira/browse/SPARK-34003
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‘resolved agg’ cannot match original attributes anymore. It causes
some dissociative sort attributes to be incorrectly pushed in.

Case 4: Sub-optimal plan because DPP rule does not work
with AQE. DPP9 (i.e., Dynamic Partition Pruning) is the optimiza-
tion to add dynamic partition pruning filter for partitioned table.
We ever found about 4 cases, in which DPP can not be applied with
AQE, leading to exception by huge scan of sub-optimal plan without
partition filter. We reported the issue10 and fixed it collaboratively.

Finding 5: There are 27.79% issues in system internal defects
caused by abnormal/suboptimal query plan. Big data SQL plan-
ner suffers from correctness and efficiency problems, including
rule’s correctness/completeness/integrity guarantee, inefficient cost
model, and inaccurate statistical runtime data.

Implication:More comprehensive check on query plan integrity
is necessary to ensure the correctness. It is also significant to im-
prove the adaptive policy to cover more scenarios.

5.2.2 Inefficient runtime data management. Current big data
frameworks like Spark use the data parallelism paradigm [22] to
execute jobs. The key features of this paradigm are (1) dividing
input/intermediate data into small partitions and launching tasks
to process them in parallel, (2) leveraging data shuffle mechanisms
like hash-based shuffle to exchange intermediate data like inter-
mediate computing results among tasks, (3) leveraging in-memory
data structures and cache mechanisms to improve the IO perfor-
mance. Since the runtime input/intermediate/output data of tasks
are dynamically changing, unexpected large runtime data can lead
to job failures or high resource consumption. Although there are
some resource control mechanisms such as spilling large shuffled
data onto disk and cache replacement, big data frameworks still
suffer when there are unexpected data sizes or distributions.

Case 1: Large input data with massive small files. A small
file refers to a data file that is much smaller than the HDFS’s default
block size (e.g., 128 MB). There are about 15 cases that have millions
of small files. These small files are generated from different data
sources or the resultant of data processing jobs. Small files not only
degrade the job performance due to more disk seeks, but also incur
a substantial task scheduling overhead.

Case 2: Large intermediate data with data skew. About 20
cases with JOIN queries suffer from OOM errors caused by the data
skew. Joining big tables needs to shuffle large data among tasks.
Some tasks will receive much more data than others, if there are
data skew like skewed key distribution. As a result, these tasks need
to aggregate more data in memory and tend to suffer from long
execution time or OOM errors. In order to alleviate this problem,
Spark’s skew join optimization11 can detect data skew from the
statistics of shuffle data and split the skewed partitions into smaller
sub-partitions. However, this optimization only works for basic
sort-merge join, and cannot be used for other cases such as join
with bucket tables and join with aggregation.

Case 3: Large output data. Some queries tend to generate
large unexpected output data during data processing. For instance,
Cartesian JOIN queries need to perform Cartesian product on two
tables. As a result, each row will be outputted many times, leading

9DPP: https://issues.apache.org/jira/browse/SPARK-11150
10DPP with AQE: https://issues.apache.org/jira/browse/SPARK-30186
11Skew join optimization: https://issues.apache.org/jira/browse/SPARK-29544

to the explosion of output data. In one case, joining one 10MB table
with one 15MB table leads to more than 500GB output data, which
exceeds the user’s space quota size with IO exception.

Finding 6: Nearly 30% of system internal defects are caused by
inefficient runtime data management. Big data framework suffers
from both memory and I/O pressures brought by unexpected large
runtime data, such as small files and data skew.

5.2.3 Inefficient job metadata management. To facilitate job
scheduling and monitoring, Spark keeps various job metadata in
driver, including lineage information (i.e., the dependencies among
tasks), dataflow/resource metrics of each stage and each task, RPC
messages, etc. In case of heavy workloads, there will be large vol-
umes of job metadata. Since the driver is a single JVM process, large
job metadata will lead to OOM errors, IO exception or job hanging.

Case: large task event metadata caused full GC. In Septem-
ber 2020, we encountered a heavy task event metadata related full
GC12, in which a query held over 100GB memory. Through the
heap dump investigation, we found a stage contained dozens of
thousands of tasks and each task held thousands of file names. Thus,
the scheduler held millions of task event metadata. All accumulator
objects will use Spark listener events to deliver to the event loop
and even a full GC can not release memory.

Finding 7: Inefficient job metadata management can impact the
system’s reliability and performance. There are totally 56 cases
suffer from large metadata under heavy jobs.

Implication: It is possible to leverage runtime features, approx-
imate algorithms or compression techniques to design memory-
efficient data structures. For example, redundant metadata fields
can be marked as soft orweak references in JVM.We can also design
distributed schedulers for scheduling large numbers of tasks.

5.2.4 Component design limitation. Apart from the above-
mentioned defects, big data frameworks like Spark are also con-
fronted with common problems in system internal component
mechanisms that involve scalability, reliability, and performance.

Case 1: Aggressive fault tolerance strategy.We ever encoun-
tered 3 cases with a big number (i.e., 3000) for retrying failed tasks,
resulting in at least four times slowdown. These cases trouble users
whether to kill & re-submit the query or just waiting for the result,
and occupies too much resources. After investigation, we found
the root cause is Spark’s endless retry logic13: "we should ideally
differentiate these task statuses so that they don’t count towards the
failure limit". That is, several special task types (e.g., speculative
commit tasks) may step into endless retry scenarios.

Case 2: Scalability limitations and inefficiency of shuffle
framework. We found 93 job slowness issues harmed by heavy
shuffle operators, including window clauses, SORT and JOIN oper-
ator. With the rapid growth of data size and scale of deployment,
shuffling is becoming a bottleneck of further scaling the infras-
tructure. Current shuffle framework provides a good balance of
fault-tolerance and performance, the fast growth of workloads poses
defects on reliability (e.g., all-to-all node connections), IO efficiency
(e.g., billions of small random disk reads) and scalability (i.e., the

12Accumulators full GC: https://issues.apache.org/jira/browse/SPARK-32994
13Task retry: https://issues.apache.org/jira/browse/SPARK-8167
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Table 5: Root causes of platform component mismatches.

Root Cause Count Ratio
Incorrect interface assumption 454 61.10%
Insufficient service federation 158 21.27%
Cross-component mis-configuration 57 7.67%
Non-reproduced 23 3.10%
Others 51 6.86%
Total 743 100%

reduction of average block size). There are also many efforts on
optimizing the shuffle framework, such as Facebook’s Casco14.

Finding 8: There are about 20% of system issues that can be
attributed to the architecture design limitations of Spark’s internal
components, such as scheduler, shuffle service, and etc.

Implication: Fault tolerance, scalability, and performance are
popular and long-standing topics in big data frameworks. There
is no universal solution for all scenarios. It is more practical to
combine platform-specific characteristics (e.g., workload distribu-
tion, data properties, etc.) with advanced techniques to improve
the scalability, fault-tolerance and performance of the platform.

5.3 Platform Component Mismatches
Carmel glues multiple open-source software components together
and orchestrates them as a big data SQL analytics platform. It relies
on multi-layer services. Any mismatches among them, as depicted
in Table 5, can lead to runtime errors.

5.3.1 Incorrect interface assumption. Interfaces are the main
bridges among different components to integrate. When the work-
loads in production environment violates the interface assumptions,
component mismatch issues occurred.

Case 1: The lack of corner case handling. Spark blacklist logic
cannot perfectly handle the case of YARN RM restart. There were
more than 50 jobs failed due to the YARN resource manager restart.
After investigation, we found the Spark’s check logic problemwould
add all worker nodes into the blacklist, but actually there’s no
black listed nodes. However, the current solution15 in Apache Spark
community is still a partial alleviation.

"Adding double check *** can not actually resolve the issue.
When active RM switches *** will be less than some small value.
If it equals to like 1, then it will trigger the *** check."
"Not sure what the status of that PR is, so I will merge this and
attach to the JIRA as a partial fix."
Case 2: Unlimited space quota assumption. More than 40

queries failed with "not enough space" when writing data, even
user’s space quota is enough. Spark calls Hadoop’s output inter-
face16 to write data into HDFS. When writing data, each task will
pre-request block-sized (e.g., 256MB) storage with replication factor.
For example, 10,000 tasks will try to acquire 256𝑀𝐵 ∗ 3 ∗ 10000 =
7.3𝑇𝐵, even when the real result size is only 1MB. Consequently, if
the directory remaining space is less than 7.3TB, the query will fail
with the "fake" quota exceeded exception. However, space quota
14Casco: https://tinyurl.com/t73f3rmj
15YARN RM restart: https://issues.apache.org/jira/browse/SPARK-29683
16SQLHadoopMapReduceCommitProtocol: https://tinyurl.com/fkyb44y9

management is common in production, violating of the assumption
of "infinite space of user’s data directory".

Finding 9: The majority (61.10%) of the platform component
mismatch issues are caused by incorrect interface assumptions,
including corner cases, restrictions, data presentation (e.g., encod-
ing scheme and case sensitivity) and so on. Whether the interface
assumption is suitable for production environment is not well an-
ticipated in open source software.

Implication: Extensive integration testing with efficient ap-
proaches to narrow down the state space are essential to find out
the incorrect assumptions about the meaning, units, or boundaries
of the data being passed between components.

5.3.2 Insufficient service federation. There are 158 (21.27%)
issues caused by component service down. Among these cases,
most errors (93) are related to Hadoop service, including NameNode
failure, YARN resource manager restart, etc. There are 25 errors
caused by Hive metastore and 9 errors caused by Zookeeper. There
are also 5.06% MySQL-related errors. The remaining issues are
caused by other inner-built components in eBay.

Although platform environment errors generally lead to a great
quantity of failures, most of them can be monitored and fixed
quickly. In May 2021, we encountered an incident with the highest
priority. The HMS service blocked nearly 1,000 queries for more
than 6 hours. Although we had two HMS servers for balance, one
was crashed and the other was stuck due to heavy read and write
access. This impressive incident urged us to realize the importance
of service federation. We have now built up 10 HMS servers.

5.3.3 Cross-componentmis-configuration. Configurationmis-
matches are among the most urgent but thorny problems in soft-
ware reliability. Improper configuration across different compo-
nents in Carmel, such as HDFS data storage, can lead to job failures,
performance degradation, and wrong results.

Case 1: Component mis-configuration leads to job failures.
In December 2020, Hadoop HDFS developers updated the configu-
rations for HDFS mount point table, leading to the failures of more
than 100 Spark jobs in Carmel. After investigation, we found that
when writing data, Carmel relies the Hadoop’s rename operation
to move data between HDFS paths. This operation is only allowed
within the same mount point, conflicting with the newly updated
mount point configuration.

Case 2: Risk Hadoop configuration that produces incom-
pleteness result. Some configurations are used to enable perfor-
mance optimizations while sacrificing data correctness to a certain
extent, such as the file output committer algorithm17 during writing
data. If it is configured as version V2, each task will move output
into the final directory concurrently, saving a lot of time for the
driver when job is committing. However, if the job fails, partial data
will be inserted, leading to an incomplete result.

Finding 10: About 7.67% of the platform component mismatch
issues are caused by cross-component mis-configurations.

Implication: The mis-configuration problem becomes more
prominent in big data ecosystem, in which components are config-
urable with hundreds of knobs.

17Risk configuration: https://issues.apache.org/jira/browse/SPARK-36121
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5.3.4 Non-reproduced. Some issues are difficult to reproduce for
root cause diagnostic due to "elastic" or "dynamic" mechanisms. For
example, YARN allocates resource containers for Spark executors
and recycles them again after executor tasks finished. Consequently,
even for the same job, the runtime generally differs on data splits,
cluster nodes and hardware environments. We ever encountered a
confusing JVM fatal error about memory crush, the detailed logs of
which are deleted by YARN container. We also failed when try to
reproduce it with more than 100 times stimulated workloads. There
is a similar case18 discussed in community. However, the ticket is
also closed and marked as "Cannot Reproduce".

"Thanks for the bug report, but I think we couldn’t move it for-
ward because no developer could reproduce this issue based on
the given information. So, I think the reporter needs more work
to narrow down the issue and make other developer understood.
At least, we need a simple query and test data to reproduce it."
Finding 11:The elastic architecture advocated by big data ecosys-

tem (especially the resource management systems like YARN) can
also make some issues (totally 23) difficult to be reproduced.

5.3.5 Others. There is also a small number (totally 51 issues) of
platform component mismatch related with component privilege
(e.g., HDFS directory owner change), cluster environment (e.g.,
network sentinel rules), and etc.

6 RQ3: LESSONS AND INSIGHTS
From the root causes, we can see that there are many research
opportunities to improve the reliability and performance of big
data analytics platform like Carmel. We summarize our lessons
with pain points and insights for the future research directions.

(1) SQL anti-pattern detector for big data. Section 5.1 indi-
cates that users may unknowingly introduce anti-patterns (e.g.,
improper data model usage, etc.) that violate fundamental design
principles. In practice, it is manual-intensive and time-consuming to
diagnose and fix these anti-patterns. For example, we spend plenty
of time to "guess" wrong code intention cases, analyze query inten-
tion and interact with users. Despite of many efforts like SQLCheck
[3], there is not any tools for big data analytics platform in pro-
duction, which share unique characteristics in data splitting, data
model, distributed execution, and etc. For the ease of system main-
tenance, an automatic and intelligent anti-pattern detector can free
both users and engineers from these pain points.

(2) Effective query plan transformation. Section 5.2 demon-
strates the performance and correctness problems in the query
planner. For the correctness (e.g., completeness, conflict, etc), there
is no feasible approach or practice in industry for rule semantic
expression and validation. Current practice relies on developers’
professional knowledge. A feasible potential solution is to enforce
more correctness validations. The performance of the plan is de-
cided by query optimizers, the most popular research topic in data-
base area. Current sophisticated approaches like XX system [12]
advocate the direction of leveraging more adaptive policies that are
learned systematically from the data and workloads. It is possible to
take advantage of historical execution metrics and design advanced
dynamic models with machine learning techniques.

18JVM fatal error: https://issues.apache.org/jira/browse/SPARK-29767

(3) Automatic configuration. Section 5.1 and Section 5.3 re-
veal the mis-configuration pains in user-side and platform cross-
component. How to quantitatively evaluate the impact of configu-
ration change and guide the configuration tuning are long-standing
problems. The main challenge is that the runtime dataflow and
resource usage are dynamically changing and determined by many
factors such as data properties, resource usage, etc. In practice, we
restrict some resource-related parameters in user side. As for the
platform side, the cross-component configuration maintenance re-
lies heavily on developer’s experience. A potential solution is to
build a dynamic model to quantify the relationship among the con-
figurations, dataflow, and resource usage. Dynamic means that the
model needs to capture the runtime varying dataflow information
and resource usage for model accuracy.

(4) Efficient data and resource management. In Section 5, we
can see that large runtime data and resource management defects
can lead to job failures and slowness. Current data and resource
management policies are simple and threshold-based. For example,
if the shuffled data in the memory achieves the threshold, Spark will
spill it onto disk. High threshold raises the risk of memory-related
issues like OOM, while a low threshold brings heavy burden on
disk I/Os. How to effectively manage the runtime data as well as the
resource is a practical problem. The main challenge lies in the trade-
offs among performance, reliability, and fairness. According to the
root cause analysis, it is possible to design more advanced data
and resource managers such as memory-efficient data structures
for intermediate/output/cached data, common data skew handlers,
more precise memory usage estimator and predictor [16], etc.

(5) Advanced replay and diagnosis tools. Big data platform’s
flexible architecture determines that the issues can occur among
multi-layers and multi-components, aggravating the difficulties of
root cause identification and issue fix. The challenges lie in: (1)
necessity of deep knowledge on all the layers, (2) the lack of re-
producible mechanism (e.g., the error in Section 5.3.4). In our daily
maintenance activity, the pain point is that more than 30% sys-
tem internal errors (e.g., full GC) require developers to trace back
from low-level abnormal items (e.g., dumped memory objects) to
high-level query. We need more advanced replay and diagnosis
framework that enables horizontally tracking among different com-
ponents, and vertically tracing the errors back to wrong operators,
improper configurations, and etc.

7 RELATEDWORK
Empirical studies on big data systems. Over the years, there
have been many empirical studies on data-intensive scalable com-
puting systems (DISC). Dinu and Ng [4] analyzed Hadoop behavior
under failures of compute nodes and found that a single failure
can result in unpredictable system performance. Xiao et al. [17]
conducted a study on commutativity, nondeterminism, and correct-
ness of data-parallel programs and revealed interesting findings
that non-commutative reduce functions lead to five bugs. Ding et al.
[21] investigated 198 failures occurred on Cassandra, HBase, HDFS,
MapReduce, and Redis. They found that almost all failures require
only 3 or fewer nodes to reproduce, and the majority of catastrophic
failures could easily be prevented by performing simple testing on
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the error handling code. Li et al. [10] studied the failure characteris-
tics of Microsoft Scope jobs, and revealed that exceptional data and
mismatched data schema are the major source of job failures, rather
than code logic. Xu et al. [18] studied 123 real-world OOM errors in
Hadoop and Spark applications. Their findings revealed that most
OOM errors (64%) are caused by memory-consuming user code.
They designed a memory profiler [19] and two types of quantitative
rules to diagnose OOM errors. The work of Zhou et al. [23] is most
closely to ours. Among the 210 real service escalations of Microsoft
big data system, they found 21.0% issues were caused by hardware
faults, 36.2% are caused by system side defects, and 37.2% are due
to customer side faults. They also discussed practical mitigation
solutions such as refining customer code. However, our study is
not limited to commercial systems and provides insights that have
not been discussed in their work, such as SQL anti-patterns, query
transformations, and distributed execution.
Failure diagnosis and fixes. Researchers have also studied failure
mitigation approaches, including debugging, profiling, tuning and
testing tools for big data systems. BigDebug [6] simulates break-
points and on-demand watchpoints to facilitate users to pinpoint
a crash-inducing record and determine the root causes of errors.
BigTests [7] adopted white-box testing approach to reason about
the internal semantics of UDFs in data-intensive scalable comput-
ing system (DISC). Their evaluation shows DISC applications are
often significantly skewed and inadequate in terms of test coverage.
The tool can minimize test data to achieve interactive and fast local
testing big data analytics. Bertty et al. [2] proposed TagSniff model
based on tag and sniff primitives, to simplify data debugging for
dataflows. They also developed a tool called Snoopy to support
both online and post-hoc debugging modes. Hui et al. [9] summa-
rized six cache-related bug patterns and proposes CacheCheck to
automatically detect cache-related bugs by analyzing the execution
traces in Spark applications. To detect DBMS bugs, Rigger and Su
devised a series of novel approaches, including PQS [15], NoRec
[13] and TLP [14]. We can leverage and extend these testing ap-
proaches to help us discover data quality issues. TaintStream [20]
automatically injects taint tracking logic into the data processing
scripts. It achieves accurate cell-level taint tracking with a precision
of 93.0% and less than 15% overhead.

8 CONCLUSION
This paper presents a comprehensive study on the service quality
issues of eBay’s big data SQL analytics platform. We demonstrate
the detailed issue symptoms and identify the main root causes,
including user side faults, system internal defects and platform
component mismatches. We further discuss lessons learned and
insights. We believe our work can not only help alleviate the pains
in big data platformmaintenance, but also inspire research interests
and motivate candidate research directions.
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